
Perfect Numbers

A perfect number N is one which is equal to the sum of all its divisors (including 1 but excluding 
N). It is sometime better to include the number itself as well, in which case, the sum of all its 
divisors is equal to 2 × N.

In what follows, p, q, r etc. are prime numbers. N is an integer. Ns is the sum of the divisors of N 
excluding N. Ns+ is the sum of the divisors including N. In general it is better to consider Ns+ which 
is therefore equal to 2N

Various cases are considered.

N = pn

N s+ = 1 + p + p2
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− 1
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= 2 pn

pn+1
− 1 = 2 pn

( p − 1)

pn(2 − p) = 1

(1)

The only solution to this equation is p = 1, n = 0. There are therefore no perfect numbers of the 
form pn (other than 1 which is not usually counted as a perfect number.) 

N = 2pn
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(2)

The only solution to this is p = 3. n = 1. This gives us N = 6 our first perfect number.

N = 3pn

N s+ = 1 + p + p2
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+ 3(1 + p + p2
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= 4
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(3)

The only solution to this is p = 2. n = 1. This gives us N = 6 as before.

N = pq

N s = 1 + p + q = pq
1 + p = q ( p − 1)

q =
p + 1
p − 1

(4)

If p + 1 is divisible by p – 1 then 2 (the difference between them) must be divisible by p – 1.

The only numbers that divide into 2 are 2 and 1. This gives the solutions p = 3 and p = 2 
respectively. This implies that q = 2 and q = 3. In both cases N = 6.



N = 2np

1 + 2 + 22
+ ... + 2n

+ p + 2 p + 22 p + ... + 2n p = 2×2n p
(1 + 2 + 22

+ ... + 2n
)(1 + p) = 2×2n p

(2n+1
− 1)(1 + p) = 2n+1 p

2n+1
+ 2n+1 p − 1 − p = 2n+1 p

p = 2n+1 − 1

(5)

Primes with the form 2n+1 – 1 are called Mersenne primes. 51 Mersenne primes are known and 
each of these has a corresponding perfect number. It is well known that the exponent of a Mersenne 
prime must itself be prime hence

p = 2n+1
−1 = M   (where n + 1  is prime) (6)

N = 2n M =
(1 + M ) .M

2
(7)

It is worth noting that the value n = 1 leads to N = 6, as before; n = 2 leads to N = 28 etc.

N = pnq   (p > 2)
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− 1

p − 1
(1 + q) = 2 pn q

pn+1
− 1 + pn+1 q − q = 2 pn+1 q − 2 pn q
pn+1

− 1 = q ( pn+1
− 2 pn

+ 1)

(8)

Since q must be at least 2, pn+1 – 1 be at least 2 × (pn+1 – 2 pn + 1).

pn+1
− 1 ≥ 2 pn+1

− 4 pn
+ 2

pn
(4 − p) ≥ 3

(9)

so the only possibility is p = 3, n = 1 in which case q = 2 and N = 6.

N = pnqm   (p > 2, n > 1, q > p, m > 1)

pn+1
− 1

p − 1
qm+1

− 1
q − 1

= 2 pn qm (10)

As p and q are increased the fractions on the LHS get smaller and in the limit

pn+1
− 1

p − 1
qm+1

− 1
q − 1

→ pn qm (11)

from above. This suggests that we should consider only cases where p and q are small. As soon as 
we reach a point where the LHS is smaller than the RHS (i.e. when there is a deficit), further 
increases in p and q will only make matters worse.

We know that when p = 2 and q = 3 then N = 2 × 3 is a solution. We also know that 2 × 32 = 18 
and 3 × 22 = 12 are not so the smallest new case is 22 × 32 = 36. This number is excessive (i.e. the 
sum of its factors is greater than N). It is instructive to see what happens to N = 2n3m as n and m are 
increased by calculating the percentage excess (i.e. (Ns – N)/N  × 100.

It turns out that all numbers of the form 2n3m are excessive and, as far as I can tell, that the 
percentage excess gets larger and larger as n and m increase.

The case of  p = 2 and q = 5 is more interesting. Here is a table of results:



51 52 53 54 55

21 – 10 – 7 – 6.4 – 6.2 – 6.2

22 + 5 + 8.5 + 9.2 + 9.3 + 9.3

33 + 12.5 + 16.2 + 17 + 17.2 + 17.1

44 + 16.2 + 20.1 + 20.9 + 21 + 21

55 + 18.1 + 22 + 22.8 + 23 + 23

It is clear that, apart from the first row, these numbers are all excessive. The only possibility of a 
perfect number is in the first row – but we have already proved that there are no perfect numbers of 
the form 2pn (other than 6).

The next case to consider is p = 3 and q = 5 but it appears that all these are deficient. I conclude 
that it is highly probable that no perfect numbers of the form pnqm exist.

If other perfect numbers exist, they must consist of at least three primes.

N = 2pq (q > p)

1 + 2 + p + q + 2 p + 2 q + pq = 2 pq
3 + 3 p + 3 q = pq
3(1 + p + q)= pq

(12)

This means that either p or q must be equal to 3. If p = 3 then:

3(1 + 3 + q)= 3 q
q = 2

(13)

This is impossible because q is supposed to be a prime greater than 3.

N = 2npq   (n > 0, q > p)

(1 + 2 + 22
+ ... + 2n

)(1 + p + q + pq) = 2×2n pq
(2n+1

− 1)(1 + p + q + pq) = 2n+1 pq
(2n+1

− 1)(1 + p + q) + (2n+1
− 1) pq = 2n+1 pq

(2n+1
− 1)(1 + p + q) = pq

(14)

This implies that (1 + p + q) must be equal to either p or q. But this is impossible since it is 
obviously larger than both.

Similar arguments show that all numbers of the form 2npqrs... i.e. all even numbers cannot be 
perfect.

N = pqr (p, q & r > 2)

1 + p + q + r + pq + qr + pr = pqr (15)

On the face of it, this is perfectly possible. The sum of 7 odd numbers is an odd number but if we 
set p = q = r = a then:

1 + 3a + 3a2
= a3 (16)

The solution to this equation is about 3.85. Roughly speaking, if p, q and r are smaller than this 
then the quadratic expression will win and if they are larger then the cubic term will win. We only 
need to see what happens to a few small values of  p, q and r to get an idea of what happens.



With p = 7, q = 5 and r = 3, N = 105 and Ns = 96 which is a deficiency of 17%.

 As we increase the values of the primes, the deficiency gets worse so there are no perfect 
numbers of this form either.

N = pnqmrl (p, q & r > 2)

pn+1
− 1

p − 1
qm+1

− 1
q − 1

r l+1
− 1

r − 1
= 2 pn qm r l (17)

As before when p q and r are large, the left hand side tends towards pqr so we only need to 
search for small values of p, q and r. Here are the first few cases where q = 3 and r = 5:

With p = 7, q = 3 and r = 5, N = 105 and Ns = 96 which is a deficiency of 17%
With p = 7, q = 32 and r = 5, N = 315 and Ns = 312 which is a deficiency of 2%..
With p = 7, q = 33 and r = 5, N = 945 and Ns = 960 which is an excess of 3%.

With p = 7, q = 3 and r = 52, N = 525 and Ns = 496 which is a deficiency of 11%.
With p = 7, q = 32 and r = 52, N = 1575 and Ns = 1612 which is an excess of 5%.
With p = 7, q = 33 and r = 52, N = 4725 and Ns = 4960 which is an excess of 10%.

With p = 11, q = 3 and r = 52, N = 825 and Ns = 744 which is a deficiency of 20%.
With p = 11, q = 32 and r = 52, N = 2475 and Ns = 2418 which is a deficiency of 5%.
With p = 11, q = 33 and r = 52, N = 7425 and Ns = 7440 which is an excess of 0.4%.

In each of these sequences we move from deficiency to excess without finding a perfect number.

When we try numbers of the form  pnqm × 52 things look more promising and we come pretty 
close when N = 35 ×  13 × 52 = 78975. The sum of the factors of this number is 78988 – only 13 too 
many!

It is clear that there are a large number of possibilities which can be serialised in many different 
ways. In some cases you can prove that the deficiency or excess will converge on a limit, but in 
those cases where a deficiency turns into an excess, only trial and error will produce a definitive 
answer.

Now, as is well known, no odd perfect number has ever been found – but my researches have 
indicated that it is not impossible for one to exist. On the other hand, it is also known that if an odd 
perfect number exists it must have at least 10 different primes so I think I will draw my own 
researches to a close here!
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